Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
2.
Food Chem ; 449: 139192, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583404

ABSTRACT

The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 µmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).


Subject(s)
Antioxidants , Hypoglycemic Agents , Antioxidants/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Acetylation , Palm Oil/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Laccase/chemistry , Laccase/metabolism , Methylation , Cellulase/chemistry , Cellulase/metabolism , Hydrolysis , Viscosity , Seeds/chemistry , Food Handling , Polyphenols/chemistry , Polyphenols/pharmacology
3.
J Oleo Sci ; 73(4): 489-502, 2024.
Article in English | MEDLINE | ID: mdl-38556283

ABSTRACT

Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.


Subject(s)
Antioxidants , Hydrogels , Antioxidants/pharmacology , Palm Oil/chemistry , Coconut Oil/chemistry , Escherichia coli , Staphylococcus aureus , Emulsions/chemistry , Anti-Bacterial Agents/pharmacology , Phytochemicals
4.
J Sci Food Agric ; 104(7): 3958-3970, 2024 May.
Article in English | MEDLINE | ID: mdl-38284502

ABSTRACT

BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate. RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention. CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Fatty Acids , Plant Oils , Palm Oil/chemistry , Plant Oils/chemistry , Fatty Acids/chemistry , Fatty Acids, Nonesterified , Oxidation-Reduction
5.
Article in English | MEDLINE | ID: mdl-37549246

ABSTRACT

The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.


Subject(s)
Esters , alpha-Chlorohydrin , Palm Oil/chemistry , Esters/analysis , Food Handling/methods , alpha-Chlorohydrin/analysis , Plant Oils/chemistry
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569487

ABSTRACT

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Subject(s)
Antineoplastic Agents , Arecaceae , Melanoma , Nanogels , Nanoparticle Drug Delivery System , Palm Oil , Resveratrol , Resveratrol/administration & dosage , Melanoma/therapy , Humans , Cell Line, Tumor , Nanogels/administration & dosage , Nanogels/chemistry , Arecaceae/chemistry , Palm Oil/chemistry , Seeds/chemistry , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
7.
Food Chem ; 412: 135558, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36716631

ABSTRACT

Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the ß' to the ß form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.


Subject(s)
Lipase , Plant Oils , Palm Oil/chemistry , Plant Oils/chemistry , Lipase/chemistry , Fatty Acids/chemistry , Triglycerides/chemistry , Glycerides/chemistry , Catalysis
8.
Food Chem ; 399: 133877, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36037682

ABSTRACT

The comparison between the crystallization and phase behavior of binary blends of anhydrous milk fat (AMF)/palm stearin (POs) and POs/palm oil (PO) was investigated. POs/POs blends showed good compatibility, while the compatibility of AMF/POs blends showed no ideal and was dominated by eutectic behavior. And the eutectic growth of blends was found to be a phenomenon that the triacylglycerol (TAG) of AMF grew on the peripheral of POs seed crystals. In binary blends, the addition of POs not only increased the liquid phase transition temperature but also induced the formation of ß crystal forms in more than 70% POs. The addition of soybean oil to binary blends could improve the compatibility of the ternary system. It eventually provided potential formulations for the production of non-hydrogenated puff pastry margarine.


Subject(s)
Milk , Plant Oils , Animals , Crystallization , Palm Oil/chemistry , Plant Oils/chemistry , Triglycerides/chemistry
9.
Sci Rep ; 12(1): 18698, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333525

ABSTRACT

The presence of metal with microwave irradiation has always invited controversial arguments as the metal will catch on fire easily. But interestingly, researchers found that arc discharge phenomena provide a promising way for molecule cracking to synthesize nanomaterials. This study developed a single-step yet affordable synthesis approach that combines microwave heating and arcing in transforming crude palm oil into magnetic nanocarbon (MNC), which can be considered a new alternative for the palm oil sectors. It involves synthesizing the medium at a partial inert condition with constant coiled stainless steel metal wire (dielectric media) and ferrocene (catalyst). This approach successfully demonstrates heating at a temperature ranging from 190.9 to 472.0 °C with different synthesis times (10-20 min). The produced MNC shows formations of spheres with average sizes of 20.38-31.04 nm, mesoporous structure (SBET: 14.83-151.95 m2/g), and high content of fixed carbon (52.79-71.24wt%), and the ratio of the D and G bands (ID/IG) is 0.98-0.99. The formation of new peaks in the FTIR spectra (522.29-588.48 cm-1) supports the appearance of the FeO compounds from the ferrocene. The magnetometer shows high magnetization saturation (22.32-26.84 emu/g) in ferromagnetic materials. The application of the MNC in wastewater treatment has been demonstrated by evaluating their adsorbent capability with Methylene Blue (MB) adsorption test at a different concentrations varying between 5 and 20 ppm. The MNC produced at synthesis time (20 min) shows the highest adsorption efficiency (10.36 mg/g) compared to others, with 87.79% removal of MB dye. As a result, the value for Langmuir is not promising compared to Freundlich, with R2 being around 0.80, 0.98, and 0.99 for MNC synthesized at 10 min (MNC10), 15 min (MNC15), and 20 min (MNC20), respectively. Hence, the adsorption system is in a heterogeneous condition. The microwave-assisted arcing thereby presents a promising approach to transforming CPO into MNC that could remove the hazardous dye.


Subject(s)
Water Pollutants, Chemical , Water Purification , Palm Oil/chemistry , Metallocenes , Microwaves , Adsorption , Water Pollutants, Chemical/chemistry
10.
Food Res Int ; 161: 111814, 2022 11.
Article in English | MEDLINE | ID: mdl-36192954

ABSTRACT

Crystallization behavior and compatibility of fat blend systems are closely related to the stability fat food. The graded binary and ternary blends of beef tallow (BT), palm oil (PO), and soybean oil (SO) were comprehensively analyzed, including lipid composition, phase behavior, crystallization behavior, solid fat content (SFC), and compatibility. It was found that, unlike the monotectic behavior of BT/SO blends, BT/PO blends were dominated by eutectic behavior, while all the binary blends exhibited ß' polymorph. The addition of BT in the binary blends not only increased the liquid phase transition temperature but also played a more important role in the SFC variation at 0-40 °C. The eutectic growth behavior of blends might be that the TAG component of PO grew on the peripheral of BT seed crystals. In addition, BT/PO/SO ternary blends showed good compatibility and ß' polymorph. Our results provide potential formulations for beef tallow-based shortening production.


Subject(s)
Plant Oils , Soybean Oil , Animals , Cattle , Crystallization , Fats , Palm Oil/chemistry , Plant Oils/chemistry , Soybean Oil/chemistry
11.
J Oleo Sci ; 71(10): 1427-1438, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36089396

ABSTRACT

Blend oils composed by leaf lard (LL) and cottonseed oil stearin (COS) were prepared and the thermal property, microstructure and crystallization of these blends were investigated in the present study. Solid fat content (SFC), thermal behaviors, triacylglycerols composition, crystal structure and morphology of the LL and COS blends were determined by pulsed nuclear magnetic resonance (pNMR), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), X-ray diffractometer (XRD) and polarized light microscope (PLM), respectively. SFC profiles and iso-solid diagrams indicated that SFCs of all blends were almost close to the weighted averages of the fat components at temperatures beyond 20°C; however, below 20°C, SFCs of blends exhibited higher than those of the weighted averages of the fat components. With the content of COS increasing, palmitic acid and linoleic acid in the blends increased, while stearic acid and oleic acid decreased; monounsaturated-disaturated (USS) and triunsaturated (UUU) glycerides in the blends enhanced, while monosaturated-diunsaturated (UUS) glycerides declined. The melting temperature of the blends decreased with the increase of COS content. The crystal forms in LL were ß' and ß, and the packing pattern was double and triple chain length (2L and 3L). With COS in blends increasing, ß' form crystals and 3L pattern reduced. Polarized light micrographs showed that the number of crystal particles in the blends raised with the increase of COS content, meanwhile, the grainsize of the sample gradually decreased. Visual appearances of the blends indicated that blending LL with COS could efficiently reduce the graininess of LL. The addition of COS had a significant effect on the crystallization behavior of LL. LL presented one-step crystallization at 10°C and 20°C, while COS showed two-step crystallization at 10°C and one-step crystallization at 20°C. However, the blends exhibited obvious two-step crystallization at 10°C, one-step or slight two-step crystallization at 20°C.


Subject(s)
Cottonseed Oil , Oleic Acid , Crystallization , Dietary Fats , Glycerides/chemistry , Linoleic Acid , Palm Oil/chemistry , Palmitic Acid , Plant Leaves/chemistry , Plant Oils/chemistry , Triglycerides/chemistry
12.
J Sci Food Agric ; 102(15): 6921-6929, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35662022

ABSTRACT

BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB). RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis. CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Petroleum , Palm Oil/chemistry , Hydrolysis , Lipase/chemistry , Fatty Acids, Nonesterified , Ethanol , Carotenoids , Phytochemicals , Plant Oils/chemistry
13.
Food Chem ; 388: 132973, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35447589

ABSTRACT

Edible crude palm oil (CPO) is a vital oil utilized in various industries, including food, pharmaceuticals, and domestic cooking. Unfortunately, reports of CPO adulteration with harmful Sudan dyes have surfaced over the years. Surface-enhanced Raman spectroscopy (SERS) and chemometrics were employed to detect Sudan dyes adulteration in CPO within 900 - 1800 cm- 1 Raman peak. The concentration of Sudan dyes detected in CPO samples ranged between 0.005 and 4 ppm. The principal component analysis (PCA) model detected Sudan II and Sudan IV in CPO with 99.88 and 99.90% accuracy. Linear discriminant analysis (LDA) and K-Nearest Neighbors (KNN) also recorded high detection rates of Sudan II and IV dyes in CPO. Sudan II and IV dyes could be detected at 0.0028 ppm and 0.0019 ppm by this sensor. The performance of the Au@Ag SERS sensor was comparable to that of HPLC. This study proved SERS and chemometrics can be used to authenticate edible CPO.


Subject(s)
Petroleum , Chemometrics , Coloring Agents/analysis , Fraud , Palm Oil/chemistry , Petroleum/analysis , Spectrum Analysis, Raman
14.
J Oleo Sci ; 71(3): 343-351, 2022.
Article in English | MEDLINE | ID: mdl-35236794

ABSTRACT

This research synthesized structure lipids (SL) from blends of fully hydrogenated palm kernel oil (FHPKO), coconut oil (CNO) and fully hydrogenated palm stearin (FHPS) by enzymatic interesterification (EIE)using rProROL, an sn-1,3-specific lipase from Rhizopus oryzae, as a catalyst. Five physical blends of FHPKO:CNO:FHPS were prepared with the following wt. ratios: 40:10:50, 50:10:40, 60:10:30, 70:10:20 and 80:10:10. The EIE reactions were carried out at 60℃ for 6 h in a batch-type reactor using rProROL 10% wt. of the substrate. It was found that EIE significantly modified the triacylglycerol compositions of the fat blends resulting in changes in the crystallization and melting behavior. In particular, SL obtained from EIE of blend 70:10:20 exhibited high potential to be used as a cocoa butter substitute (CBS) because it showed similar solid fat content curve to the commercial CBS and crystallized into fine spherulites and desirable ß' polymorph.


Subject(s)
Plant Oils , Coconut Oil/chemistry , Dietary Fats , Esterification , Palm Oil/chemistry , Plant Oils/chemistry , Triglycerides
15.
J Oleo Sci ; 71(2): 177-185, 2022.
Article in English | MEDLINE | ID: mdl-35110462

ABSTRACT

Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.


Subject(s)
Food Handling/methods , Liquid-Liquid Extraction/methods , Palm Oil/chemistry , Phospholipids/isolation & purification , Phosphorus/isolation & purification , Phytochemicals/analysis , Carotenoids/analysis , Food Quality , Palm Oil/analysis , Phospholipids/analysis , Phosphoric Acids/chemistry , Phosphorus/analysis , Solvents , Vitamin E/analysis
16.
Crit Rev Food Sci Nutr ; 62(7): 1990-1998, 2022.
Article in English | MEDLINE | ID: mdl-33393824

ABSTRACT

The public health debate about fats and human health has been ongoing for a long time. Specifically, the fat types commonly used in the food industry and the techniques used in extracting them are remarkable in terms of human health. Among these, palm oil, which is mainly associated with cardiovascular disease (CVD), is a vegetable oil type that is widely used in the food industry. Moreover, the fractionation of palm oil has become quite common in the food industry when compared to other culinary oils and fats. Fractional crystallization, which has been recently regarded as an alternative to hydrogenization and interesterification methods, has become more popular in edible oil technology, even though it is an ancient method. The main fractions of palm oil are palm olein and palm stearin. Palm oil fractions, which have some pros and cons, are used in edible oils, such as margarine/shortening, as well as bread and cake-like pastry production. Since the fatty acid composition of palm oil, palm kernel oil, and their fractions is different, each type of oil needs to be evaluated separately with regards to their CVD effects and food preparation applications. However, the effects of the fractionation method and the fractional palm oil produced on health are controversial in the literature. In this review, the use of palm oil produced via the fractional crystallization method in the food industry and its potential CVD effects were evaluated.


Subject(s)
Margarine , Plant Oils , Fatty Acids/analysis , Food Industry , Humans , Margarine/analysis , Palm Oil/chemistry , Plant Oils/chemistry
17.
J Oleo Sci ; 71(1): 51-55, 2022 Jan 08.
Article in English | MEDLINE | ID: mdl-34880149

ABSTRACT

Vitamin E (VitE) production from crude palm oil (CPO) has been extensively studied and industrially conducted. VitE in CPO is in the range of 600 to 1,000 ppm, and is usually produced from one of the main by-products of edible palm oil production, namely palm fatty acid distillate (PFAD). PFAD contains 4,000 to 5,500 ppm of VitE, and is produced from deodorization process of palm oil purification. This paper presents an innovative process of VitE concentrate production from CPO. A scrubber was designed and installed between the deodorizer and conventional PFAD scrubber. The main objective of this new scrubber was a recovery of glycerides from PFAD. This new scrubber is operated at 150 to 160℃. The scrubbed oil is named as Scrubbed Palm Fatty Acid Distillate (S-PFAD). This simple and efficient modified process can retrieve glycerides as S-PFAD at 0.3% recovery and it enhances VitE concentration in S-PFAD to the range of 28,000 to 32,000 ppm, which is the highest concentration of VitE that has ever been produced in the palm oil production. Fatty acids and glycerides in S-PFAD were esterified and transesterified to methyl esters. The methyl esters were evaporated from S-PFAD, and S-PFAD residue oil contained 24.7% VitE.


Subject(s)
Food Handling/methods , Palm Oil/chemistry , Vitamin E/isolation & purification , Esterification , Esters/chemistry , Glycerides/isolation & purification , Hot Temperature , Palm Oil/analysis , Vitamin E/analysis
18.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884899

ABSTRACT

Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and ß-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.


Subject(s)
Liver/metabolism , Palm Oil/administration & dosage , Palmitic Acid/chemistry , Proteomics/methods , Soybean Oil/administration & dosage , Amino Acids/metabolism , Animals , Dietary Supplements , Fatty Acids/analysis , Homeostasis , Liver/drug effects , Macrophages, Peritoneal/chemistry , Male , Mass Spectrometry , Mice , Palm Oil/chemistry , Palm Oil/pharmacology , Soybean Oil/pharmacology
19.
Int J Biol Macromol ; 193(Pt B): 2006-2020, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34752794

ABSTRACT

This study aimed to utilize cationic protein extracted from the Moringa oleifera seed in the fabrication of cationic starch crosslinked with magnetic nanoparticles (MagCS). Important synthesis parameters include starch to cationic protein volume ratio, magnetic nanoparticles mass fraction, reaction and crosslinking time, reaction and crosslinking temperature and crosslinker concentration. At optimum synthesis conditions, MagCS yield a 38.55% amide content, 2.46 degree of substitution, 1.1 mmol/g charge density and 78.6% crosslinking, which are much higher compared to other starch derivatives. A series of characterization analyses such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis and vibrating sample magnetometer concluded that MagCS was embedded with amide group, has high crystallinity structure, is thermally stable and shows a promising magnetic characteristic. Based on the synthesis parameters and characterization studies, the synthesis mechanism of MagCS was also postulated. The flocculation performance of MagCS was successfully assessed for the treatment of palm oil mill effluent. At optimum dosage, initial pH and settling time of 1.0 g/L, 9.0 and 15 min, the MagCS flocculant was able to remove 90.48, 83.95 and 58.19% of turbidity, color and chemical oxygen demand, respectively. This study provides an alternative eco-friendly materials in the wastewater treatment application.


Subject(s)
Ferric Compounds/chemistry , Flocculation/drug effects , Moringa oleifera/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Starch/chemistry , Cations/chemistry , Palm Oil/chemistry , Plant Extracts/chemistry , Water Purification/methods
20.
J Oleo Sci ; 70(12): 1719-1729, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34759109

ABSTRACT

Oxidative stress occurs due to the imbalance amount of the free radicals and antioxidants in human body which often associated with numerous chronic diseases. The antioxidant properties of red palm-pressed mesocarp olein (PPMO) have not been widely studied. Therefore, antioxidant properties of PPMO relative to commercially available edible oils, namely red palm olein (RPO), palm olein (PO), extra virgin olive oil (OO) and extra virgin coconut oil (CNO) were studied. PPMO exhibited significant higher phytonutrients which more than 2-fold compared to the edible oils. Overall, antioxidant screening indicated that PPMO has significantly higher antioxidant activities than RPO, PO and CNO in term of DPPH, H2O2, NO scavenging and FIC; and significantly higher H2O2 and FIC than OO. The outcomes of this study reveal that PPMO is as good as commercially available edible oil, also a good source for food applications and dietary nutritional supplements. More importantly, the utilization of PPMO could mitigate oil palm waste problem and results in positive environmental impact.


Subject(s)
Antioxidants , Palm Oil/chemistry , Palm Oil/pharmacology , Coconut Oil/pharmacology , Dietary Supplements , Free Radical Scavengers , Olive Oil/pharmacology , Phytochemicals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...